Supplementary difference sets related to a certain class of complex spherical 2-codes

نویسندگان

  • Makoto Araya
  • Masaaki Harada
  • Sho Suda
چکیده

In this paper, we study skew-symmetric 2-{v; r, k;λ} supplementary difference sets related to a certain class of complex spherical 2-codes. A classification of such supplementary difference sets is completed for v ≤ 51.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel fuzzy multi-criteria decision-making methodology based upon the spherical fuzzy sets with a real case study

The choice of roll stabilization system is critical for many types of ships. For warships where operational activities are fast and the concept of time is very effective, determining the most appropriate of these systems is of particular importance. Some operations, such as the landing of the helicopter on board, are critical for naval ships. Unwanted rolling motion makes this difficult. In add...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Discrepancy, separation and Riesz energy of point sets on the unit sphere

When does a sequence of spherical codes with “good” spherical cap discrepancy, and “good” separation also have “good” Riesz s-energy? For d > 2 and the Riesz s-energy for 0 < s < d, we consider asymptotically equidistributed sequences of S codes with an upper bound δ on discrepancy and a lower bound ∆ on separation. For such sequences, the difference between the normalized Riesz s-energy and th...

متن کامل

New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups

A partial difference set having parameters (n2, r(n− 1), n+ r2 − 3r, r2 − r) is called a Latin square type partial difference set, while a partial difference set having parameters (n2, r(n+1),−n+r2+3r, r2+r) is called a negative Latin square type partial difference set. Nearly all known constructions of negative Latin square partial difference sets are in elementary abelian groups. In this pape...

متن کامل

Difference Sets Corresponding to a Class of Symmetric Designs

Abstract. We study difference sets with parameters (v, k, λ) = (ps(r2m − 1)/(r − 1), ps−1r2m−1, ps−2(r − 1)r2m−2), where r = (ps − 1)/(p − 1) and p is a prime. Examples for such difference sets are known from a construction of McFarland which works for m = 1 and all p, s. We will prove a structural theorem on difference sets with the above parameters; it will include the result, that under the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016